Chapter 6:
- File Processing

Copyright 2006 by Pearson Education

Lecture outline

= line-based file processing using Scanner s

= processing a file line by line

» Mixing line-based and token-based file processing
» Searching for a particular line record in a file

» graphically displaying data from a file

= complex file input
= Mixing nextLine and token-based methods

—

"7 Copyright 2006 by Pearson Education 2

| s
Copyright 2006 by Pearson Education

Line-by-line processing

= A Scanner object has the following methods:

Method Description
nextLine() returns the next entire line of input
hasNextLine() returns true if there are any more lines of input
to read (always true for console input)

= The Scanner 's nextLine method reads a line of input.
» It consumes from the input cursor's position to the next \n .

Scanner input = new Scanner(new File(" <file name>"));
while (input.hasNextLine()) {

String line = Input.nextLine() ;

<process this line>;

}

———

_ Copyright 2006 by Pearson Education 4

—

—

Line input example

= Given the following input data:

23 3.14 John Smith "Hello world"
45.2 19

= The Scanner can read the following input:
23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

N

= | nput. next Li ne()
23\t3.14 John Smith\t"Hello world" \n\t\t45.2 19\n

N

= | nput. next Li ne()
23\t3.14 John Smith\t"Hello world™\n \t\t45.2 19

\n

= Each \n character is consumed but not returned.

—

~ Copyright 2006 by Pearson Education

File processing question

= A program that "quotes" a text file's email message:

Example input message.txt Example output:
Please tell the students > Please tell the students
I'll be curving the grades > |'ll be curving the grades
downward! > downward!
>

Love, Prof. Meanie > Love, Prof. Meanie
import java.io.*; I/ for File
import java.util.*; // for Scanner

public class QuoteMessage {
public static void main(String[] args)
throws FileNotFoundException {
Scanner input = new Scanner(new File("message.txt")) ,
while (input.hasNextLine()) {
String line = iInput.nextLine() ,
System.out.printin("> " + line);

}
-}

= P

~ Copyright 2006 by Pearson Education

—

IMDb movies problem

= Consider the following Internet Movie Database (IMDb) Top-250
data from a file imdb.txt in this format, with rankings and votes:

1 9.1 196376 The Shawshank Redemption (1994)
2 8.9 93064 The Godfather: Part Il (1974)
3 8.8 81507 Casablanca (1942)

= Write a program that prompts the user for a search phrase and
displays any movies that contain that phrase.

Search word? part

Rank Votes Rating Title

3 139085 9.0 The Godfather: Part Il (197 4)
40 129172 8.5 The Departed (2006)

95 20401 8.2 The Apartment (1960)

192 30587 8.0 Spartacus (1960)

4 matches.

=« Is this a token-based problem, or a line-based problem?

= P

~ Copyright 2006 by Pearson Education 7

—

A good start

// Displays IMDB's Top 250 movies that match a searc
import java.io.*; /[for File
import java.util.*; /Il for Scanner

public class Movies {
public static void main(String[] args)
throws FileNotFoundException {
String searchWord = getWord();
Scanner input = new Scanner(new File("imdb.txt"));

while (input.hasNextLine()
/I search for lines that match the search word
String line = input.nextLine()
iIf (line.indexOf(searchWord) >= 0) {
\ System.out.printin(line);

}

Il Asks the user for their search word and returns

public static String getWord() {
System.out.print("Search word: ");
Scanner console = new Scanner(System.in);
String searchWord = console.next();
searchWord = searchWord.toLowerCase();
System.out.printin();

\ return searchWord,;

-

" Copyright 2006 by Pearson Education

h string.

it.

Flaws with our solution

= Problems with our solution:

= It is case-sensitive.
s It doesn't count the number of matches.
= The output format for each line is incorrect.

= Observations:

= We care about the line breaks (they separate movies), but we
also want to break apart the tokens up to reformat each line.

= The best solution is a hybrid approach:
=« Break the overall input into lines.
=« Break each line into tokens.

—

~ Copyright 2006 by Pearson Education 9

—

Tokenizing lines

= A Scanner can tokenize the contents of a String

Scanner <name> =new Scanner(<String>),

= We can use String Scanner s to process each line of a file.

Scanner input = new Scanner(new File(" <file name>"));
while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

<process the tokens of this line>;

—

~ Copyright 2006 by Pearson Education 10

—

—

= P

—

Line processing example

= Example: Count the words on each line of a file.

Scanner input = new Scanner(new File("input.txt"));

while (input.hasNextLine()) {
String line = input.nextLine();
Scanner lineScan = new Scanner(line);

Int count = O;

while (lineScan.hasNext()) {
String word = lineScan.next();
count++;

}

System.out.printin("Line has " + count + " words");

Input file input.txt

Output to console:

The quick brown fox jumps over
the lazy dog.

Line has 6 words
Line has 3 words

~ Copyright 2006 by Pearson Education

11

—

IMDD revisited

= Fix our IMDB program's behavior:
= Make it case-insensitive.
= Make it count the matches.
= Make it format the output correctly as shown below.
= Break the program better into methods.

Search word? part

Rank Votes Title

3 139085 9.0 The Godfather: Part Il (197
40 129172 8.5 The Departed (2006)

95 20401 8.2 The Apartment (1960)
192 30587 8.0 Spartacus (1960)

4 matches.

—

~ Copyright 2006 by Pearson Education

4)

12

}

I DLELR]

// Displays IMDB's Top 250 movies that match a searc
Import java.io.*; /I for File
import java.util.*; /l for Scanner

public class Movies {
public static void main(String[] args) throws FileN

String searchWord = getWord();
Scanner input = new Scanner(new File("imdb.txt"));
String line = search(input, searchWord);

int matches = 0;
if (line.length() > 0) {
System.out.printin("Rank\tVotes\tRating\tTitle");
while (line.length() > 0) {
matches++;
display(line, matches);
line = search(input, searchWord);

}

System.out.printin(matches + " matches.");

/I Asks the user for their search word and returns
public static String getWord() {

m

= AT

—

System.out.print("Search word: ");

Scanner console = new Scanner(System.in);
String searchWord = console.next();
searchWord = searchWord.toLowerCase();
System.out.printin();

return searchWord,

___ Copyright 2006 by Pearson Education

h string.

otFoundException {

13

—

IMDDb answer 2

// Breaks apart each line, looking for lines that m atch the search word.
public static String search(Scanner input, String se archWord) {
while (input.hasNextLine()) {
String line = input.nextLine();
String lineLC = line.toLowerCase(); /] case-insensitive match
if (lineLC .indexOf(searchWord) >= 0) {
return line;
}
}

return

/l not found

}

/I Displays the line in the proper format on the sc reen.
public static void display(String line, int matches) {

Scanner lineScan = new Scanner(lme)

int rank = lineScan.nextint()

double rating = lineScan. nextDoubIe() ;

int votes = lineScan.nextint() ;

String title ="

while (IineScan.hasNext()) {

title += lineScan.next() +"" Il the rest of the line

System.out.printin(rank + "\t" + votes + "\t" + rati ng + "\t" + title);

- Copyright 2006 by Pearson Education

14

Graphical IMDB problem

= Turn our IMDb code into a graphical program.
= top-left 0.0 tick mark at (0, 20)
= ticks 10px tall, 50px apart

first blue bar top/left corner at (0, 70)

bars 50px tall
bars 50px wide per rating point
bars 100px apart vertically

— . Copyright 2006 by Pearson Education

~/DrawingPanel

=JOkS

File View Help

0 |1.U I2.U |3.U 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Mixing graphical, text output

= When solving complex file I/O problems with a mix of
text and graphical output, attack the problem in pieces.

Do the text input/output and file I/O first:
= Display any welcome message and initial console input.

= Open the input file and print some file data.
(Perhaps print every line, the first token of each line, etc.)

= Search the input file for the proper line record(s).

Next, begin the graphical output:
= Draw any fixed items that do not depend on the file results.
= Draw the graphical output that depends on the search result.

—

_ Copyright 2006 by Pearson Education 16

—

Graphical IMDb answer 1

// Displays IMDB's Top 250 movies that match a searc

Import java.awt.*; Il for Graphics
Import java.io.*; /I for File
import java.util.*; Il for Scanner

public class Movies2 {
public static void main(String[] args) throws FileN

}

String searchWord = getWord();
Scanner input = new Scanner(new File("imdb.txt"));
String line = search(input, searchWord);

int matches = 0;
if (line.length() > 0) {
System.out.printin("Rank\tVotes\tRating\tTitle");
Graphics g = createWindow();
while (line.length() > 0) {
matches++;
display(g, line, matches);
} line = search(input, searchWord);
}

System.out.printin(matches + " matches.");

/I Asks the user for their search word and returns
public static String getWord() {

)

- e

—

System.out.print("Search word: ");

Scanner console = new Scanner(System.in);
String searchWord = console.next();
searchWord = searchWord.toLowerCase();
System.out.printin();

return searchWord;

" Copyright 2006 by Pearson Education

h string.

otFoundException {

17

—

Graphical IMDb answer 2

// Breaks apart each line, looking for lines that m
public static String search(Scanner input, String se
while (input.hasNextLine()) {
String line = input.nextLine();
String lineLC = line.toLowerCase();
if (lineLC.indexOf(searchWord) >=0) {
return line;
}
}

return " /I not found

}

/l Displays the line in the proper format on the sc
public static void display(Graphics g,
Scanner lineScan = new Scanner(line);

int rank = lineScan.nextInt();

double rating = lineScan.nextDouble();

int votes = IlneScan nextint();

String title ="

while (IlneScan hasNext()) {
title += lineScan.next() +

System.out.printin(rank + "\t" + votes + "\t" + rati ng + "\t" + title);

drawBar(g, matches, title, rank, rating);

- Copyright 2006 by Pearson Education

atch the search word.
archWord) {

/I case-insensitive match

S reen.
String line, int matches) {

/] the rest of the line

18

=3}

Graphical IMDb answer 3

/I Creates a drawing panel and draws all fixed grap hics.
public static Graphics createWindow() {

DrawingPanel panel = new DrawingPanel(600, 500);

Graphics g = panel.getGraphics();

for (inti=0;1<=10; i++) { I/ draw tick marks
int x =i *50;
g.drawLine(x, 20, x, 30);
g.drawString(i + ".0", x, 20);

}
return g;
}
/I Draws one red bar representing a movie's votes a nd ranking.
public static void drawBar(Graphics g, int matches, String title,
int rank, double rating) {
inty =70 + 100 * (matches - 1);
int w = (int) (rating * 50);
int h = 50;
g.setColor(Color.BLUE); // draw the blue bar for that movie
g.fillRect(0, y, w, h);
g.setColor(Color.BLACK);
} g.drawString("#" + rank + ": " + title, 0, y);

o — Copyright 2006 by Pearson Education

19

| s
Copyright 2006 by Pearson Education

Another example

= Given a file with the following contents:

123 Susan 12.58.1 7.6 3.2
456 Brad 4.0 11.6 6.52.7 12
789 Jenn 8.08.0 8.0 80 7.5

=« Consider the task of computing hours worked by each person:

Susan (ID#123) worked 31.4 hours (7.85 hours/day)
Brad (ID#456) worked 36.8 hours (7.36 hours/day)
Jenn (ID#789) worked 39.5 hours (7.9 hours/day)

= Let's try to solve this problem token-by-token ...

—

—

~ Copyright 2006 by Pearson Education

21

=2)

- e

; Copyright 2006 by Pearson Education

—

A flawed solution

import java.io.*; I/ for File
import java.util.*; // for Scanner

public class HoursWorked { // @ non-working solution
public static void main(String[] args)
throws FileNotFoundException {
Scanner input = new Scanner(new File("hours.txt"));
while (input.hasNext()) {
/] process one person
Int id = input.nextint();
String name = input.next();
double totalHours = 0.0;

Int days = 0;

while (input.hasNextDouble()) {
totalHours += iInput.nextDouble()
days++;

}

System.out.printin(name + " (ID#" + id +
"y worked " + totalHours + " hours (" +
(totalHours / days) + " hours/day)");

}
}

22

The flaw

= Flawed solution's output:
Susan (ID#123) worked 487.4 hours (97.48 hours/day)
Exception in thread "main"
java.util.InputMismatchException
at java.util.Scanner.throwFor(Scanner.java:840)
at java.util.Scanner.next(Scanner.java:1461)
at java.util.Scanner.nextint(Scanner.java:2091)
at java.util.Scanner.nextInt(Scanner.java:2050)
at HoursWorked.main(HoursBad.java:9)

= The inner while loop is grabbing the next person's ID.

= Observations:

= We need to process the individual tokens, but we also care
about the line breaks (they tell us when one person is done).
= The best solution is a hybrid approach:
=« Break the overall input into lines.
" =« Break each line into tokens.

~ Copyright 2006 by Pearson Education 23

—

—

Complex lines

= Fix the program to compute employee hours worked:

Susan (ID#123) worked 31.4 hours (7.85 hours/day)
Brad (ID#456) worked 36.8 hours (7.36 hours/day)
Jenn (ID#789) worked 39.5 hours (7.9 hours/day)

= Modify the program so it searches for a person by ID:

= Example:
Enter an ID: 456

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

= Example:
Enter an ID: 293

ID#293 not found

—

~ Copyright 2006 by Pearson Education

24

Complex input answer 1

/[This program searches an input file of employees " hours worked

/l for a particular employee and outputs that emplo yee's hours data.
Import java.io.*; /I for File

import java.util.*; // for Scanner

public class HoursWorked {
public static void main(String[] args) throws FileN otFoundException {
Scanner console = new Scanner(System.in);
System.out.print("Enter an ID: ");
int searchld = console.nextint(); /Il e.g. 456

Scanner input = new Scanner(new File("hours.txt"));
String line = findPerson(input, searchld);
if (line.length() > 0) {
processLine(line);
} else {
System.out.printin("ID#" + searchld + " was not foun d");
}

=3}

"7 Copyright 2006 by Pearson Education 2

Complex input answer 2

/I Locates and returns the line of data about a par ticular person.
public static String findPerson(Scanner input, int s earchld) {
while (input.hasNextLine()) {
String line = input.nextLine();
Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); /Il e.g. 456
if (id == searchld) {
return line; /[we found them!
}
}
return "'; /I not found, so return an empty line
}
/] Totals the hours worked by the person and output s their info.

public static void processLine(String line) {
Scanner lineScan = new Scanner(line);

int id = lineScan.nextInt(); /Il e.g. 456
String name = lineScan.next(); /l e.g. "Brad"
double hours = 0.0;

int days = 0;

while (lineScan.hasNextDouble()) {
hours += lineScan.nextDouble();
days++;

}

System.out.printin(name + " (ID#" + id + ") worked " + hours + " hours (*
+ (hours / days) + " hours/day)");

i

~_ Copyright 2006 by Pearson Education 26

—

Copyright 2006 by Pearson Education

Confusion w/ nextLine

= Using nextLine in conjunction with the token-based
methods on the same Scanner can cause odd results.

=« Given the following input:

23 3.14
Joe "Hello world"
45.2 19

= You'd think that you could read the 23 and 3.14 with calls to
nextint and nextDouble respectively, and then read the
following Joe "Hello world" part with nextLine . But:

System.out.printin(input.nextint()); // 23
System.out.printin(input.nextDouble()); //3.14
System.out.printin(input.nextLine()); //

= The nextLine call produces no output! Why is this?

—

= P

~ Copyright 2006 by Pearson Education 28

—

—

Mixing line-based with tokens

= Here's what the Scanner does when you mix nextLine
with the token-based methods on the same Scanner

23 3.14
Joe "Hello world"
45.2 19

iInput.nextint() Il 23
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

| nput . next Doubl e() // 3.14
23\t 3.14 \nJoe\t"Hello world"\n\t\t45.2 19\n
N\

| nput . next Li ne() I (empty!)
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

i nput . next Li ne() /1 "Joe\t\"Hello worla\"
23\t3.14\n Joe\t"Hello world" \n\t\t45.2 19\n
N\

—

~ Copyright 2006 by Pearson Education

29

Line-and-token example

= Another example of the confusing behavior:
Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
Int age = console.nextint()
System.out.print("Now enter your name: ");
String name = console.nextLine()
System.out.printin(name + " is " + age + " years ol d.");

Log of execution (user input underlined):
Enter your age: 12
Now enter your name: Marty Stepp
IS 12 years old.

= User's overall input: 12\nMarty Stepp
= After nextint(): 12>\nMarty Stepp

= After nextLine(): 12\nMartyAStepp

—

~ Copyright 2006 by Pearson Education 30

—

